Modeling the generative capacity

(1) Shifting gears a bit: (we'll finish last time's handout shortly)
 - Goal for the last couple of weeks: parsing and generating known forms
 - What does meowing mean? What is the past tense of walk?
 - We have been assuming that we have access to a lexicon with the words meow, walk, etc., and they are known to be regular
 - How does the model know that they are regular?
 - Why is this probably not a very realistic model of human speakers?
 - Goal for the rest of the course: modeling speakers rather than languages

(2) What do speakers know about generating forms?
 - What is the past tense of walk? sing? anastomose? mip? spling?
 - Two (potentially) distinct tasks:
 - Producing forms of known verbs
 - Producing forms of nonce verbs (heard for the first time)

<table>
<thead>
<tr>
<th>Verb</th>
<th>Reg. past</th>
<th>Reg. responses</th>
<th>Irreg. past</th>
<th>Irreg. responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>spling</td>
<td>splinged</td>
<td>71%</td>
<td>splung</td>
<td>33%</td>
</tr>
<tr>
<td>skring</td>
<td>skringed</td>
<td>75%</td>
<td>skrung</td>
<td>38%</td>
</tr>
<tr>
<td>cleed</td>
<td>cleeded</td>
<td>83%</td>
<td>cled</td>
<td>42%</td>
</tr>
<tr>
<td>preed</td>
<td>preeded</td>
<td>63%</td>
<td>pred</td>
<td>25%</td>
</tr>
<tr>
<td>plare</td>
<td>plared</td>
<td>83%</td>
<td>plore</td>
<td>29%</td>
</tr>
<tr>
<td>cleef</td>
<td>cleefed</td>
<td>71%</td>
<td>clef</td>
<td>33%</td>
</tr>
<tr>
<td>preek</td>
<td>preeked</td>
<td>96%</td>
<td>prek</td>
<td>79%</td>
</tr>
<tr>
<td>flape</td>
<td>flaped</td>
<td>100%</td>
<td>flope</td>
<td>21%</td>
</tr>
<tr>
<td>blafe</td>
<td>blafed</td>
<td>96%</td>
<td>blofe</td>
<td>38%</td>
</tr>
<tr>
<td>glip</td>
<td>glipped</td>
<td>100%</td>
<td>glup</td>
<td>42%</td>
</tr>
<tr>
<td>pleem</td>
<td>pleemed</td>
<td>100%</td>
<td>plem</td>
<td>33%</td>
</tr>
<tr>
<td>slace</td>
<td>slaced</td>
<td>100%</td>
<td>sloce</td>
<td>17%</td>
</tr>
<tr>
<td>nace</td>
<td>naced</td>
<td>92%</td>
<td>noce</td>
<td>54%</td>
</tr>
<tr>
<td>glinth</td>
<td>glinthed</td>
<td>100%</td>
<td>glunth</td>
<td>33%</td>
</tr>
<tr>
<td>frilg</td>
<td>frilged</td>
<td>96%</td>
<td>frulg</td>
<td>79%</td>
</tr>
</tbody>
</table>

 - What do you need to know to do these tasks? What influences responses for a particular verb? What do you need to learn?

(3) Two different models of the generative capacity:
 - Grammar of rules (suffix -ed, change [i] to [æ], etc.)
 - Analogy to existing forms (form past like walked, form past like sang, etc.)

(4) We’ll look at models of both types this week

A rule-based model

➢ Introduction to the approach on last time's handout
(5) Summary so far: constructing rules by comparing forms
 - Successively comparing forms eventually yields very general rules

 \[
 \begin{align*}
 \text{shine: } & \emptyset \rightarrow d / \left[\text{ain } _ _ _ \right]^{\text{[past]}} \\
 \text{rub: } & \emptyset \rightarrow d / \left[\text{rab } _ _ _ \right]^{\text{[past]}} \\
 \text{dry: } & \emptyset \rightarrow d / \left[\text{drai } _ _ _ \right]^{\text{[past]}} \\
 \text{sing: } & \emptyset \rightarrow d / \left[\text{s} _ _ _ \right]^{\text{[past]}}
 \end{align*}
 \]

(6) And likewise for other changes

\[
\begin{align*}
\text{drink: } & \emptyset \rightarrow d / \left[\text{dr } _ _ \right]^{\text{[past]}} \\
\text{shrink: } & \emptyset \rightarrow d / \left[\text{Sr } _ _ _ \right]^{\text{[past]}} \\
\text{sing: } & \emptyset \rightarrow d / \left[\text{s } _ _ _ \right]^{\text{[past]}}
\end{align*}
\]

(7) Competition between different patterns: novel verb spling [splŋ]
 - The rule \(\emptyset \rightarrow d / [+\text{voi}] _ _ _ _ \) predicts splinged [splŋd]
 - The rule \(1 \rightarrow \text{æ} / X \left[-\text{syl} +\text{cor} \right] Y \) predicts splang [splæŋ]

(8) Similar rules for other changes (1 \(\rightarrow \), \(\lambda \), etc.)

(9) Rule evaluation: how do we know which rules to trust?
 - Intuition: we want to trust the rules that actually work!
 - Working means that they derive correct outputs for many verbs, and derive as few incorrect outputs as possible
 - The rule \(\emptyset \rightarrow d / [+\text{voi}] _ _ _ _ \) works for tons of verbs (all regular verbs ending in voiced segments), but it fails for some verbs (such as sing, for which it predicted *singed)
 - The rule \(1 \rightarrow \text{æ} / X \left[-\text{syl} +\text{cor} \right] Y \) works for a handful of verbs (drink, shrink, sing, ring, etc.)
 but it fails for a lot of verbs (such as sink, bring, sync, etc.)

(10) Calculating rule performance: two useful numbers
 - \textit{Scope}: equals the number of words that the rule could potentially apply to (that is, the words that meet the structural description of the rule)
 - \textit{Hits}: equals the number of forms that the rules can successfully derive
 - \textit{Reliability} of the rule = \frac{\text{hits}}{\text{scope}}

(11) Example: the rule \(1 \rightarrow \text{æ} / X \left[-\text{syl} +\text{cor} \right] Y \)
 - Can successfully derive 6 hits (drink, shrink, spring, ring, sing, sink)
 - Fails for 11 others (at least): bring, spring (~ sprung), slink, spling, fling, link, string, wrinkle, sprinkle, crinkle, linger
 - \text{Scope} = 6 + 11 = 17
 - \text{Reliability} of the rule = \frac{6}{17} = 0.35