Finishing up with finding generalizations; course summary

(1) Review of the past week: Excel as a tool for finding generalizations and testing hypotheses

- Great tool for collecting, organizing, and counting data
- Even moderately capable of calculating properties of words (sonority of the final segment, weight of the penultimate syllable, etc.), using functions
- More complex tasks such as converting orthography to phonemic transcription, syllabifying words to determine if VCCV is VC.CV or V.CCV, are not so easy with functions; better to write a program to take care of these things
 - Excel does have built-in macro capability, using the VisualBasic programming language; could write programs to do these things in the macro module
 - Or, could write separate Perl scripts, etc.
 - I highly encourage you to take a programming class or work through an intro textbook in Perl/Java/C++/whatever you prefer, esp. if you intend to go on in linguistics, or are thinking about a career in linguistics-related industry
- But, of course, Excel can't tell you what it all means!
 - There are millions of patterns and significant differences in the world, but not all of them are equally interesting
 - When you find an intriguing pattern, there is still a lot of analysis left to do
 - Impossible to make sense of observations without careful thought, statistics, corroborating experimental results, and most of all, a theory

(2) Some things to keep in mind as you do your final assignment

- You are free to pick whatever hypotheses you want to test, but it's always a good idea to have some reason for believing that your hypothesis stands a good chance of being right
 - If you're trying to explain property X, some a priori reason for expecting that property Y may have an effect on X.
 - Since your assignment is to test at least 2 different properties, you might also find it instructive to test one hypothesis that strikes you as quite likely and one that strikes you as relatively unlikely
 - Your choice of properties will also be restricted a bit by the types of things that can be calculated in Excel (talk to me if you want to test a particular hypothesis, but can't figure out how to calculate the relevant property with Excel)

(3) Another approach to finding generalizations: using the rule-based model from Week 8

- There is a file named SpanishConjugations.in in the directory mingenlearner; task is to predict the infinitive ending (-ar, -er, -ir) based on the root
 - E.g., habl → hablar, habler, or hablir
 - Rules are of the form ∅ → -ar / X
 - If certain phonological environments (such as after [s], after velars, after stop + [r], etc.) are often associated with a particular class, then there will be very reliable rules deriving that class in that environment
 - Strategy: let the model learn rules to attach the infinitive ending to roots of different shapes, and then test it on a wide variety of real or made-up verbs to see which ones are most likely to belong to a particular class, and why.
Course summary

(4) Overall goal: expose you to a variety of concepts, techniques and skills that are useful in computer-assisted analysis of language
 - Using Perl scripts to process text, and do simple tasks like grapheme-to-phoneme conversion
 - For more hands-on experience with using regular expressions and text processing, check out Ling 80G (Intro to Unix)
 - Finding boundaries
 - \(n \)-gram transition probabilities between phonemes to find word/morpheme boundaries
 - \(n \)-gram probabilities between words or parts of speech are also often used to find phrase and sentence boundaries
 - Successor counts (Harris)
 - Minimum Description Length: economical to treat recurring substrings as single units
 - Comparing phonemes and strings
 - Aligning and comparing sequences with String edit (Levenshtein) distance
 - Calculating similarity of phonemes using shared and unshared natural classes
 - Morphological parsing
 - Introduction to the task: what properties should a morphological parser have?
 - Balancing look-up and decomposition; when one or the other is necessary
 - Simple parsing using Microsoft Excel
 - A fancier formalism: Finite State Machines
 - Generating new, morphologically complex forms
 - ...with FSA's, using a hand-crafted grammar
 - ...with rules, using an inductively learned grammar
 - ...by analogy, using no grammar (just a lexicon of known words)
 - Finding generalizations from large databases

(5) A couple topics that would logically come next, if we had time
 - An elementary introduction to statistics, for testing how significant an observed pattern is (are \(C_iV_iC_i \) roots really underattested in English? should we trust the observation about height harmony in Spanish conjugation classes?)
 - Statistical models of “wordlikeness”: what makes \(\text{mip} \) and \(\text{pack} \) perfect words of English, while \(\text{tweep} \) and \(\text{smick} \) are sort of odd and \(\text{bnick} \) and \(\text{skaog} \) are impossible.
 - Relating data to theory: learning rules/constraint rankings on the basis of (possibly messy) input data; in other words, a model of how the learner constructs the hypotheses to be tested
 - Constructing databases to suit your purposes is also another important topic that deserves some attention!

(6) Computers, linguistics, the future, and you:

A few of the things I hope you take away from this class
 - A basic understanding of concepts like \(n \)-grams, minimum description length, finite state machines, etc., so when people mention them, you will know what they are talking about
 - A sense of some of the ways in which computational techniques can be useful in carrying out linguistic analysis (in both practical and theoretical ways)
 - An eagerness to turn to computers to organize data and solve problems, both in linguistics and in other areas

Thanks for your attention and patience!